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Abstract

The Falling weight deflectometer test (FWD) is a commonly used method for the evaluation of
the structural performance of pavement systems. In the FWD test, a large weight is raised off the
ground and dropped onto a rubber loading pad creating an impulse load representative of the real
loading imposed by heavy traffic on the pavement. The excitation produced by the loading sets off
waves in the pavement and underlying soil. Deflection time histories are gathered by an array of
sensors placed at several nearby locations.

The traditional method for interpreting the FWD data to backcalculate structural pavement prop-
erties, involves extracting the peak deflection from each displacement trace of the sensors (deflection
basin) and matching it through an iterative optimization method to the deflections predicted by a
static model of the pavement. This approach is computationally efficient, and when the depths of
the layers are known, and their properties are largely homogeneous with depth, the procedure is
effective in backcalculating layer properties. However, when the depths are uncertain or when the
moduli vary within a layer, the static backcalculation scheme may not yield reliable results.

The goal of this study is to investigate the feasibility and effectiveness of using the complete
time history of the FWD test to overcome some of the limitations of the static backcalculation
procedure, and recover pavement layer moduli distribution and thicknesses. The problem is also
formulated as a numerical minimization problem, where the unknowns are the resilient moduli of
thin ”computational layers” that discretize the profile. Our initial findings is that this optimization
formulation regularized by constraints on the magnitude and spatial gradient of the moduli, coupled
with a continuation scheme for imposing the regularization terms, can overcome the ill-posedness
nature of the original optimization problem. The computational effort for solving this inverse
problem, however, is very significant as it requires repeated calls to the expensive forward problem:
an elastodynamic simulation in stiff heterogeneous media. Additional work is needed to speed up
the forward problem to be able to perform a more comprehensive evaluation with field data.
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Chapter 1

Introduction

1.1 The Problem

The Falling weight deflectometer test (FWD) is a commonly used method for the evaluation of
the structural performance of pavement systems. In the FWD test, a large weight is raised off the
ground and dropped onto a rubber loading pad. This creates a 20- to 70-ms impulse load with a
magnitude of 10 to 260 KN. The pulse from the FWD is meant to represent a realistic loading,
and the FWD test is the only commercially available system that applies loading that somewhat
represents the loading that traffic imposes on the pavement.

The excitation produced by the loading sets off waves in the pavement and underlying soil. Deflec-
tion time histories are gathered by an array of sensors placed at several nearby locations (up to a
distance of about 1.2 m from the point of application of the load). The response time histories are
typically recorded at a high sampling rate (20-60ms).

The traditional method for interpreting the FWD data to backcalculate structural pavement prop-
erties, involves extracting the peak deflection from each displacement trace of the sensors. The peak
deflections, as a function of distance, represent a deflection basin. A numerical optimization scheme
is used to match this deflection basin to the deflections predicted by a model of the pavement. The
optimization scheme is an iterative procedure that modifies the elastic moduli of the layers of the
pavement system until a best fit is produced. Such a procedure is implemented by the WSDOT
computer program, Evercalc.

This approach, using a static model and matching it to the peak deflections of the dynamic response,
has several advantages. It is computationally very efficient, and when the depths of the layers are
known, and their properties are largely homogeneous with depth, the procedure is effective in
backcalculating layer properties. However, when the depths are uncertain or when the moduli vary
within a layer, the static backcalculation scheme may not yield reliable results.
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The goal of this research is to investigate the feasibility and effectiveness of using the complete
time history of the FWD test to overcome some of the limitations of the static backcalculation
procedure.
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Chapter 2

Optimization-based Methods for
Backcalculation with Dynamic Data

2.1 Idealization

The pavement model that we use in this study consists of three dimensional horizontal layers as
shown in Figure 2.1.
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Figure 2.1: Schematic of a typical pavement profile

In WA state, it is typical practice to arrange the layers with decreasing stiffness with depth. Table
2.1 shows typical layer properties (E, ν, ρ, thickness h) for a four layer pavement profile. The
effective (resilient) modulus E (and its potential variation within a layer) and the layer depths are
the primary variables to be backcalculated. We note here that some pavements have an ”inverted”
profile where one of the lower supporting layers has a larger stiffness than that of one of the upper
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layers. The backcalculation procedures we seek to develop need not make a-priori assumptions
about the profile.

Table 2.1: Mechanical properties for a typical pavement profile
Material E [MPa] ν ρ[kg/m3] h [m]

Asphalt Concerte 7.58 · 104 .33 2100 0.1− 0.2
Crushed Stone 3.1 · 102 .35 1900 0.2− 0.4

Clay 1.8 · 102 .38 1900 depending on site
Subgrade 1.5 · 102 .4 1900 depending on site

The specific data to be used in the backcalculation comes from the FWD response time history.
Figure 2.2 shows a schematic of a FWD test. The load is applied on a loadplate which distributes
it uniformly to the ground. Geophones are placed at prescribed distances from it. The actual
geometrical setup varies slightly between agencies [15] but generally consists of about half a dozen
geophones placed in a region of about 1.5m away from the loadplate. As Figure 2.2 shows, elastic
waves propagate and are going to be partly reflected at the interface between two layers. The rest
of the waves penetrate and propagate to the next layer where the process is repeated.

Loadplate

Layer No. 1

Layer No. 2

Layer No. 3

Geophone

0.3m 0.3m 0.3m 0.3m 0.3m 0.3m

Figure 2.2: The structure of a FWD test: waves propagate and are partly reflected at layer interfaces

The simulation of the response of the system over the time scale of interest (approx. 50ms) requires
a complete elastodynamic computation and cannot be limited to a ”first arrival” approach, because
the waves continue either to be reflected at layer boundaries or to penetrate into other layers.
So in an asphalt-concrete layer waves can—because of the high stiffness and the resulting high
wavespeeds—bounce up and down a few hundred times before the complete simulation is finished.
This leads to a FWD deflection which looks typically like the one shown in Figure 2.3. It can be
seen that the deflection peaks occur later the further away the geophone is situated. Naturally,
different configurations of subsurface layers with particular mechanical properties yield to different
deflection history (peaks, shape of the response, and lag).

6



0 10 20 30 40 50 60
−50

0

50

100

150

200

250

300

350

400
Deflection of geophones (Site 2); LWP−series 1 (6000lb, ca. 380kPa)

time [ms]

de
fle

ct
io

n 
[m

u]
, l

oa
d 

[k
P

a]

Load
r1
r2
r3
r4
r5
r6

Figure 2.3: A typical FWD response: The deflection history of the geophones vs. time.

2.2 Basic Formulation

The formulation of an optimization problem for computing the profile of a pavement section requires
three ingredients: identification of the set of unknowns to be calculated; an objective function to
be optimized; and a computational strategy for finding the values of the unknowns.

In this work, the pavement section is discretized into a number of horizontal ”thin layers” and the
resilient moduli (Mr) of those layers define the set of properties to be computed by the backcal-
culation procedure. In order to reduce difficulties associated with roundoff arising from properties
varying by many orders of magnitude between layers, it is typical to use the log of the moduli
(x = logMr) in the calculations. We note here that the number of computational ”thin layers”
do not correspond to the number of physical layers in the pavement structure. The computational
layers represent a finer discretization of the depth, hence allowing for properties to vary even within
a physical layer. Even though it is not strictly necessary, we assume constant properties within a
computational layer.

The objective function to be minimized is the difference between the recorded response at the
receivers and the computed response of a pavement profile whose properties are encoded in the
vector x. This represents the error in the model, and the minimization problem may be written as:

min
x∈<n

E(x) = ‖f(x)‖2
2 =

nr∑
i=1

nt∑
j=1

||frec(i, j)− fcom(i, j,x)||2 (2.2.1)

where n is the number of computational layers, nr is the number of receivers, nt is the number
of time steps in the recorded response, and frec and fcom are the recorded and computed motions
respectively.
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Since this error function is continuous with respect to x, gradient-based methods are the preferred
numerical methods for computing the minimum. These methods require the repeated evaluation
of the error (objective) function and its derivatives. The evaluation of the objective function for a
given pavement profile (x), involves performing an elastodynamic simulation in order to compute
the function fcom. This is known as a ”forward solution” and is the most computationally expensive
portion of the computation, and will be discussed in the next chapter. The computation of the
derivatives is best performed using an adjoint method which, from a computational view, involves
an additional evaluation of the objective/error function.

2.3 Regularization Schemes

Unfortunately, a straightforward numerical optimization to minimize the error function above gen-
erally fails. The mathematical problem is not well-posed in the sense that small perturbations in
the input, can lead to very different results. In order to be able to robustly obtain a meaningful set
of parameters, the minimization problem is replaced by a related one that has improved numerical
properties. This is known as regularization.

2.3.1 Regularization Parameters

Regularization is one technique used to solve ill-posed problems. Mathematically, regularization
involves redefining Eq. 2.2.1 as:

min
x∈<n

F (x) = E(x) + ‖Ω(x)‖2
2 (2.3.1)

The original least-squares error term, or residual norm, has been regularized by a side constraint,
‖Ω(x)‖2

2.

One side constraint commonly used is:

‖Ω(x)‖2
2 = λ2‖Lx||22. (2.3.2)

where λ is a regularization parameter, and L for present purposes, will be taken as an n×n identity
matrix, I. λ controls the weight of the regularization term. A large λ desensitizes the residual term
and forces a minimum to occur at a low value of x, while at small λ, the side constraint disappears
[8].

Physically, the side constraint changes F by adding a quadratic surface to the residual norm. This
stabilizes the optimization process by sliding each step toward the true minima. Fig. 2.4 illustrates
this for a univariate objective function. Choosing a proper value of λ is important to achieve the
correct amount of regularization. A large λ will move optimization away from the true minima,
while a small λ may not be effective in regularizing the function. The contour plots in Fig. 2.5 show
the effect of various values of the regularization parameter on a two-variable objective function.
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Figure 2.5: Contour Plots of Regularized 2D Function
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Regularization is generally used when solving ill-posed least squares problems. A plot that is
often used to describe the influence of λ is called an L-curve [9] (Fig. 2.6). L-curves are plots
that illustrate solutions to a regularized linear least squares problem at different values of λ. The
curve is a log-log plot of the solution, where the x-axis represents residual norm values (2.2.1)
and the y-axis represents the regularizing side-constraint (2.3.2) values. A larger λ induces more
regularization or “filtering”. Effects of smaller λ, or less filtering may be noted, as one moves along
the L-curve.

CONSTRAINT
        SIDE 

less filtering

more filtering

RESIDUAL  NORM

LOG 10

LOG10

Figure 2.6: L-curve

2.3.2 Regularization of FWD Backcalculation

As mentioned above, minimization of the error residual does not guarantee convergence. Using
initial moduli values for the iterative optimization procedure (xseed) close to the solution may end
with a correct result. However, a start farther away from the solution may not. Even when F is a
function of one parameter (Fig. 2.4), a gradient based optimization algorithm with a high starting
point (x > 8.3) will result in a diverging solution if the unregularized error is minimized.

Regularization alters the function surface by adding a parabolic characteristic to F that prevents
divergent solutions. To evaluate the effect of a regularization term on FWD data, we consider the
following form for F

F = E(x) + λ2‖ x− xo

length(x)
‖2
2, (2.3.3)

where a side constraint, ‖ x−xo

length(x)‖
2
2 has been added, and λ weighs this new term. The denominator

for this new term was added as a form of normalizing the regularization term, making it indepen-
dent to the number of layers in the pavement. Equation 2.3.3 is a nonlinear version of Tikhonov
Regularization in standard form [8].
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An illustration of regularization effects is shown in Figure 2.7. Figure 2.7 illustrates the recon-
struction of a uniform profile, using different values of the parameter λ. The horizontal axis
shows the λ values and the vertical axis shows the reconstructed profile which has been discretized
using 20 thin computational layers. Each run in Figure 2.7 has xseed = 8 × ones(20, 1) and
xo = 7× ones(20, 1), but uses a different value of λ (215 to 2−9, exponentially decreasing by two).
The upper left corner plot illustrates how optimization converges to a minimized side constraint
solution (x∗ = 7×ones(20, 1)) at a large value of λ, and slowly converges to the minimized residual
norm solution (x∗ = 8× ones(20, 1)) as λ decreases. The lower left plot illustrates this relationship
in terms of the actual objective function, residual norm, and side constraint values.
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Figure 2.7: Regularization Results-Stiffness Values

A better comparison of the norm values may be illustrated by plotting log10‖x−xo‖2
2 (log10 of the

side constraint) vs log10‖f(x)‖2
2 (log10 of the residual norm) for each run (Fig. 2.8). Each asterisk

corresponds to a solution for one value of λ. For a run with a large value of λ, λ > 25, the solution
is insensitive to the residual norm value, and highly sensitive to the side constraint, resulting in
the vertical line depicted. As λ → 1, a behavior reversal can be observed, and as λ → 0, the side
constraint value levels off, minimizing the residual norm.
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2.3.3 Difficulties of a-priori Choice of Parameters

Figures 2.7 and 2.8 illustrate convergence under ideal conditions since a seed value of xseed =
8 × ones(20, 1), the solution profile, was used. Figures 2.9 and 2.10 depict results for the same
strategies used to produce Figures 2.7 and 2.8, except xseed = 11 × ones(20, 1) was used. Figures
2.9 and 2.10 illustrate increasing instability at lower λ values. Solutions with λ = 1

2 ,
1
4 , 2

−3, . . . were
divergent and not useful as backcalculation results. The profile obtained through minimization of
the objective function shows a soft top layer, a very stiff middle region, and a soft bottom layer!
Such solutions are not physically meaningful.
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Figure 2.9: Justifying Continuation-Stiffness Values

The examples above illustrate a general trend: small values of λ do not regularize the solution
sufficiently and result in divergent solutions; large values of λ change the minimization function
significantly and do not converge to the true solution. In essence, large values of λ ”smooth” the
objective function at the expense of shifting the true minimum. Small values, on the other hand,
do not sufficiently smooth the objective function and a gradient-based numerical optimization gets
”stuck” in a local, not physically meaningful, minimum, or does not converge at all. It is therefore
essential to choose appropriate values of λ for the optimization procedure, to balance these two
competing demands.
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Unfortunately, it generally not possible to do so a-priori. The choice of the proper regularization
parameter depends on the specific nature of the pavement profile, relative stiffness values, and has
to be determined at run-time. A strategy for adaptively discovering the proper value consists of
starting with a large λ (giving a smooth but modified objective), performing an optimization, and
using the converged solution as the starting point of another optimization problem with a smaller
value of λ. Incorporating such a strategy is known as a continuation approach, and has been used
in the past [5] for adaptive regularization.

2.3.4 Continuation Methods for Adpative Regularization

To illustrate the ability of a continuation method of avoiding non-physical solutions, we considered
the same uniform profile above, with a starting value of xseed = 11 × ones(20, 1), which should
be higher than any moduli expected (Mr < 1011 Pa), and an initial side constraint constant of
xo = zeros(20, 1). Each optimization call was limited to length(x) steps, an “efficient” amount of
allowed optimization iterations (after that, the objective function decreased very slowly). Choosing
these values represented a start without any a priori knowledge of the pavement profile. Figure 2.11
illustrates results from this continuation strategy. As expected, by reducing λ slowly, the divergent
solutions present in Figures 2.9 have been eliminated.

2.4 Effect of Noise

Instrumentation error exists in all field data. In order to assess the effect of noisy data, a random
perturbation was added to the synthesized data used in the previous examples. Using the contin-
uation strategy described above and synthesized deflection noise of ε(5%) did not result in conver-
gence to a smooth solution. Figure 2.12 illustrates the continuation run utilizing noisy data. x∗ =
{8.169, 7.765, 7.795, 8.179, 8.355, 8.313, 8.137, 8.010, 8.091, 8.015, 7.768, 7.687, 7.856, 8.026, 8.145,
8.229, 8.289, 8.269, 8.084, 7.770} (x = log10(Mr)). The solution differs from the actual profile by
having alternating stiff and soft layers. Such solutions are known as rough. Objective function and
residual norm values do not decrease to the same extent as the corresponding values do in Figure
2.11.

These solutions are only likely to worsen when more complex pavement profiles are reconstructed.
Rough solutions are generally a product of noisy data that alters the error function surface enough to
lead optimization astray. To prevent this behavior, a second side constraint that controls roughness
was added to F :

F = E(x) + λ2‖ x− xo

length(x)
‖2
2 + λ2‖xtop − xbottom‖2

2, (2.4.1)

with xbottom = (log10(Mr,1), . . . , log10(Mr,i−1))
T ,xtop = (log10(Mr,2), . . . , log10(Mr,i))T ), for a pave-

ment with i elements. This second side constraint, sometimes called a smoothness penalty, controls
stiffness changes between adjoining elements, preventing roughness. A solution that utilizes this sec-
ond smoothing term converged to x = {7.985, 7.986, 7.988, 7.990, 7.992, 7.994, 7.996, 7.997, 7.998, 7.999,
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Figure 2.11: Continuation Results-Stiffness Values
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Figure 2.12: Rough Results-Stiffness Values
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7.999, 7.999, 7.999, 7.999, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000}.

The results of adding a smoothing penalty term are illustrated in Figure 2.13, with a log-log plots of
the second side constraint and residual norm in Figure 2.14. Figure 2.14 has features of Hansen’s L-
curve, Figure 2.6. At large λ, the vertical trend is again present, then as λ→ 4, leveling off occurs;
when λ < 4 a different behavior can be noted. Both the residual norm and smoothness term decrease
(marked by the o’s in Figure 2.14). This behavior is favorable because the profile becomes smoother
and more accurate simultaneously, A solution at λ = 1

2 , or the “corner” of this plot, represents the
closest result to the actual profile: x = {7.985, 7.986, 7.988, 7.990, 7.992, 7.994, 7.996, 7.997, 7.998, 7.999, 7.999,
7.999, 7.999, 7.999, 8.000,
8.000, 8.000, 8.000, 8.000, 8.000} After passing this corner (λ < 1

2), roughness increases, marked by
the rising smoothing penalty norm. The corner of the curve is the ideal solution.
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Figure 2.13: Results With Second Side Constraint-Stiffness Values

A more effective continuation approach also resets the side constraint constant, xo, to the solution of
the previous call. This addition alters the objective function by moving the parabolic regularization
surface to a more effective spot for optimization, and it also relinquishes the responsibility of defining
a value for xo at each optimization call. Corresponding plots of this extended continuation approach
are illustrated in Figures 2.15, 2.16, and 2.17, with xo = zeros(20, 1) and initial seed parameters,
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Figure 2.14: Results With Second Side-Constraint, Second Side-Constraint Values
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xseed = 11× ones(20, 1).
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Figure 2.15: Additional Continuation, Stiffness Values

With this change, both side constraints behave in a similar manner with an increasing side constraint
at large λ, a negative gradient as λ→ 1 (marked by o’s) in Figures 2.16 and 2.17, then an increasing
side constraint as λ→ 0. Again, at the corner (λ = 1

2), convergence to the correct solution occurs.

2.5 Examples

In this section, the regularized optimization problem with a continuation method is tested on a
number of backcalculation problems. The results are from synthetically generated data with random
noise both in 1D and 3D, and from field data. The one dimensional problem (which assumes that
pavement behavior may be approximated by a one-dimensional vertical equivalent) was used in
testing to speed up the development, since the three dimensional problem formulation requires an
expensive elastodynamic simulation (forward solution) at every optimization iteration. In the next
chapter we will describe methods we developed for efficient 3D forward simulations.
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Figure 2.16: Additional Continuation, First Side-Constraint Values
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Figure 2.17: Additional Continuation, Second Side-Constraint Values
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In the computations, we use a Levenberg-Marquardt method with a quadratic polynomial line-
search for the solutions of the nonlinear least squares subproblems. An initial value of λ was chosen
to ensure that the side constraints will be larger than the residual norm and that a high seed value
will decrease to the correct magnitude. λ was decreased according to the value of the residual
E(x) after each optimization solution. Once the rate of decrease of the residual norm had slowed
down (the solution began to get rougher), the algorithm stopped. That solution was taken as the
backcalculated profile.

The results are presented in the following form. The actual profile (that was used to generate the
synthetic data for the backcalculation) is shown on the upper right. For problems using field data,
the best available estimate of the profile is shown. The progress of the optimization procedure
is shown along a horizontal axis. The axis shows the number of least squares iterations. On
the vertical axis, the evolving backcalculated profile is shown. On the left is the initial profile
(grayscale map) which changes to the final converged profile on the right. The lower left plot shows
the corresponding decrease in the objective function during the backcalculation.

2.5.1 One dimensional Problems

Figure 2.18 illustrates a run for a three layered pavement system. The profile is discretized into
twenty computational layers with one variable per layer. Physical layer thicknesses may be readily
obtained from these results.

Another set of runs compared the results between two systems with similar static stiffnesses. Back-
calculation of these profiles is difficult to achieve using a static deflection basin based strategy.
Figure 2.19 illustrates backcalculation of a system with a .2 m top layer moduli of 109 Pa. Figure
2.20 illustrates backcalculation of a system with a top layer with doubled stiffness, 2 × 109 Pa,
and thickness, .4 m (same static stiffness). Using the time history based backcalculation strategy
resulted in correct convergence for both cases.

2.5.2 Three-dimensional Problems

Figure 2.22 shows the results from a 3-layer profile reconstructed using a three-dimensional for-
ward problem. The data used is shown in the reconstruction is shown in Figure 2.21. The system
was discretized into 10 computational layers, and had a uniform starting profile (the first iter-
ations in each run were cut off to better illustrate the contrasting shaded layers). After about
eighty least square iterations, the profile results converged to the actual profile. Continuation in-
fluences may be observed by studying objective function values. Sudden drops indicated breaks
between optimization calls, where a new regularization (λ) value was being used. Actual moduli:
1e9× ones(4, 1); 5e8; 5e8; 1e8× ones(4, 1) (250 mm top layer, 250 mm middle layer, 1.5 m bottom
layer) were compared to the final backcalculated moduli: {1.000e9, 9.999e8, 1.000e9, 9.999e8, 5.000e8,
5.000e8, 1.000e8, 1.000e8, 1.000e8, 1.000e8} to illustrate correct convergence. (All stiffnesses are in
Pascals).
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Figure 2.18: One-Dimensional Backcalculation Run-Multiple Layers
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Figure 2.19: One-Dimensional Backcalculation Run-Soft/Thin Surface
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Figure 2.20: One-Dimensional Backcalculation Run-Stiff/Thick Surface

26



0 0.01 0.02 0.03 0.04 0.05 0.06
−100

0

100

200

300

400

500

600

time (sec)

lo
ad

 (
kP

a)
 o

r 
de

fle
ct

io
ns

 (
10

−6
 m

)

pulse     
deflection

Figure 2.21: Synthesized Data-Typical Pavement
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Figure 2.22: Typical 3D Pavement Backcalculation
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With this spatial resolution, stiff embedded layers (say, a layer of portland cement concrete covered
by asphalt), or thin embedded soft layers (which can represent highly deteriorated subsurface
layers or voids) could not be correctly captured. Higher resolutions (for the forward elastodynamic
simulation, and for the discretization used in the optimization problem) are necessary to capture
these features. Unfortunately, higher resolutions require significantly more computing time and are
not practical yet.

2.5.3 Field Data

A reconstruction from field data, on a three-layer profile, is illustrated below. In order to perform
these computations however, the raw data had to be preprocessed to filter out high frequency
noise (anything above 100 Hz) in deflection and pulse data, and correct for a time lag between
pulse/deflection that appears in the collected FWD data. In addition, a smaller window of the
data was used: the time histories starting at pulse initiation, and a few data points after pulse
end were included in the backcalculation. Using the full window would require additional data
correction (as has been proposed in the past [21]), and was not deemed necessary since the time
window used contained most of the information needed. The raw and corrected data used in the
backcalculation are shown below in Figures 2.23 and 2.24 respectively.

Reconstruction results are shown in Figure 2.25. Only the top one meter of pavement stiffnesses
are plotted (a thick 8m layer exists at the bottom of the model to simulate an ”infinite” depth to
bedrock). Final stiffness results were: {1.529e9, 1.179e9, 7.255e8, 3.955e8, 2.095e8, 1.199e8, 7.752e7,
6.324e7, 6.200e7, 8.084e7, 1.056e8, 1.056e8}. The objective function values approached 10−2, and a
pattern with a stiff upper layer and a softer lower layer did develop. Note that the discretization
used in this backcalculation did not take advantage a-priori information about layer depths, and
therefore the reconstruction has computational layers that span physical layer boundaries. A finer
resolution will naturally capture these boundaries better.
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Figure 2.23: Raw FWD Data
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Figure 2.24: Processed Backcalculation Data
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Figure 2.25: Results with nonconforming Mesh
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Chapter 3

Efficient Methods for the Forward
Problem

The main computational bottleneck for the backcalculation procedure described in the previous
chapter is the forward simulation: the three dimensional elastodynamic problem whose solution is
needed at every iteration of the optimization procedure. It is therefore essential to develop methods
that can efficiently perform this computation. This chapter summarizes the methods we developed
for this purpose.

3.1 Formulation in the Interior of the Domain

The basic equations governing wave propagation in continuous media may be written as a hyper-
bolic system of partial differential equations in 1, 2 or 3 space dimensions. Finite volume methods
(FVM) are powerful numerical methods particularly suited for wave propagation problem in het-
erogeneous media. They rely on discretizing the spatial domain into cells, and solving ”Riemann
problems” at cell boundaries. Riemann problems involve determining the local wave structure at
these boundaries, to propagate waves to neighboring cells in a stable fashion that eliminates nu-
merical oscillations. These methods were originally designed to capture shock waves and can be
used with similar effectiveness for linear and nonlinear problems [14].

For an axisymmetric domain, the governing equations may be expressed as:

qt +Aqr +Bqz = ψ(q) (3.1.1)

Subscripts denote differentiation (with respect to time t, the radial direction r, or the vertical
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direction z).

q =


σrr

σzz

σrz

vr

vz

 , A3Daxi =


0 0 0 (λ+ 2µ)nr λnz

0 0 0 λnr (λ+ 2µ)nz

0 0 0 µnz µnr

nr

ρ 0 nz

ρ 0 0
0 nz

ρ
nr

ρ 0 0

 , ψ(q, κ) =


(λ+2µ)σrr−λσzz

2ρ(λ+µ)r
1
ρrσrz

0
0
0


nr and nz are the radial and vertical components of a unit vector in the direction of propagation.
The coefficient matrices A and B may be obtained from A3Daxi by setting the n-direction to the
radial and vertical directions. ψ(q) is a ”source” term and r is the distance from the center of the
axisymmetric domain. σij are the components of the stress tensor, and v is the velocity of the
medium. λ and µ are the Lamé coefficients for linear elastic materials. They are related to the
Young’s modulus E and the Poisson’s ratio ν.

λ =
Eν

(1 + ν)(1− 2ν)
(3.1.2)

µ = G =
E

2(1 + ν)
(3.1.3)

The wavespeeds of the primary and secondary waves cp, cs, that is waves which oscillate in the
direction of the wave propagation and orthogonal may then be expressed in terms of the material
coefficients as:

cp =

√
E

ρ
=

√
λ+ 2µ
ρ

(3.1.4)

cs =
√
µ

ρ
(3.1.5)

Note that the wavespeed grows with higher values of E. This fact is crucial since it has big
implications on the computational cost, as the largest time step that can be used in the solution
must satisfy the stability condition:

4t ≤ C · 4x
cp

(3.1.6)

where 4x is the cell size and C the Courant number (C ≤ 1). This restriction has a considerable
impact on the computation time. For larger stiffness and consequently larger wavespeed cp the
timestep 4t decreases and the number of time steps goes up. Equation 3.1.4 shows that if the
stiffness increases by a factor of ten the timestep 4t decreases and hence the number of steps
increases by a factor of

√
10 = 3.16. It is also worth noting that a finer spatial discretization 4x

also requires smaller time steps.
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3.2 FWD Simulations

The solution of the elastodynamic set of equations by FVM consists of an explicit time integration.
At every time step stress and velocity discontinuities at an interface between cells give rise to waves
propagating into the adjacent cells, and are used to update the stress and velocities for the next
time step. Details of the algorithm and its implementation may be found in [22]. We summarize
the main FWD-specific features of the implementation in this section.

3.2.1 Graded Discretizations

Cartesian grids are often the most desirable spatial discretizations from a computational perspec-
tive. They are efficient, can readily take advantage of the memory hierarchies of modern computer
architectures, and require relatively simple data structures for implementation. Using a uniform
cartesian grid for the whole simulation domain however is wasteful not only because of the in-
creased number of cells, but also because the necessary reduction of the time step over the whole
computational domain.

To take advantage of the efficiency of cartesian grids, without introducing unnecessary spatial
refinement everywhere, our discretiation consists of a multi-level grid, where regions in which more
accuracy is needed rely on a finer discretization locally. The refined parts of the computational
domain are handled as rectangular (superposed) patches as shown in Figure 3.1 (the figure shows
half of the axisymmetric formulation). The load, and sensors, are located on the top left part
of the grid (refined region). The left boundary is a symmetry boundary. The right and bottom
boundaries of the computational grid are absorbing boundaries that allow outgoing waves to go
through unreflected into the domain.

Figure 3.1: Three superposed grid patches. The upper leftmost patch is the most refined.

This multilevel discretization not only allows coarser cells to be used far away from the region
where accuracy is most needed, but also allows large time steps to be used in those regions. The
largest time step, as mentioned previously, depends on the cell size of the discretization. Standard
finite element simulations suffer from the problem that the time step for dynamic simulations must
be constant everywhere in the domain, and hence are constrained by the smallest cell size. The
methods proposed here allow the natural use of different time steps in different regions of the grid,

35



and therefore result in significant computational speedup. In this work the grid patches for the
different refinement levels have the following sizes and are placed according to Figure 3.1 (l and h
are domain width and cell size):

• level 3 patch(finest): l3 = 1/4 · l, h3 = 1/4 · h

• level 2 patch: l2 = 1/2 · l, h2 = 1/2 · h

• level 1 patch: l1 = l, h1 = h

3.2.2 Symmetry and Absorbing Boundary Conditions

In order to save half of the computational cost symmetry boundary conditions were implemented.
At the symmetry boundary we have: σxy = u = 0. Figure 3.2 shows how the implementation is
handled. Two layers of ”ghost cells” are introduced to store the information needed to impose
symmetry on the computations performed in the main computational domain.
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Figure 3.2: Applying the load in the case of the symmetry boundary condition.

In FVM simulations, the computational domain is finite. An infinite physical domain is being
truncated at some distance to generate the finite computational grid. It is thus necessary to impose
boundary conditions that allow us to compute on the finite smaller domain and obtain results
that agree with what would be computed on a larger domain. For wave propagation problems,
these boundary conditions are known as ”absorbing boundaries”. Effective absorbing boundary
conditions can be obtained by simply using zero-order extrapolation from the boundaries of the
grid to ”ghost cells” that are added to the domain. This simple approach to absorbing boundary
conditions works remarkably well for one-dimensional as well as multidimensional problems.
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The approach used is shown in Figure 3.3. At the boundary, only outgoing waves are supposed
to cross the interface between the computational domain and the ghostcells. This approach seems
reasonable in the case of FWD tests where the waves propagate away from the place of impact.

Figure 3.3 shows the right boundary of a computational domain. On the left the zero order
boundary conditions are shown. The values of q(x, t) are simply transferred from the outmost cell
in the domain (m, j) to the ghostcells (m + 1, j), (m + 2, j). This strategy relies on the fact that
the Riemann problem at the edge of the computational domain has the same data on either side,
resulting in zero-strength waves and in particular no ingoing waves [14] into the computational
domain.
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Figure 3.3: Implementation of zero order boundary conditions (left) and first order boundary
condtitions (right).

Zero order extrapolation boundary conditions lose some of their efficiency if the waves do not exit
the domain in a perpendicular direction to the boundary. We tested an implementation of first
order boundary conditions. See Figure 3.3, right. The direction of the wave propagation is assumed
to be identical to the direction of the displacement in the cell (m, j). Therefore the velocities u, v
determine the direction in which q(x, t) of the cell (m, j) will be shifted. In Figure 3.3 q(x, t) is
split to cells (m + 1, j), (m + 1, j + 1) and (m + 2, j), (m + 2, j + 1) respectively. This approach
yields smoother results but does not dissipate enough energy and hence was not used any further.

3.2.3 Coordinate mapping

Another mechanism to improve the accuracy of the solution with a limited computational budget,
involves coordinate mapping which stretches the spatial grid but still allows the underlying com-
putations to be performed on a uniform and/or multilevel cartesian grid. Mapping is a very useful
tool in backcalculations. It allows us to maintain a fixed and uniform/multilevel computational grid
to which the data is mapped (see Figure 3.4). Hence meshing flexibility can be achieved and the
computational model can be easily adapted to different pavement configurations. Given that the
top layers are relatively thin, this allows the use of more computational grid points in these regions.
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In this work only mapping in the vertical direction is implemented. Mapping is implemented via a
capacity function κi that is introduced in the discretized equations. κi = 4xi/4 ξ, where 4ξ is
the cellsize of the appropriate grid level (Figure 3.4, left) in the vertical direction and 4xi is the
vertical cellsize of the ith layer in the real profile (Figure 3.4, right) which changes over the height
of the domain. In the case of a uniform real profile κi = 1 for all cells i. Coordinate mapping
decreases the contrast in the effective computational wave speeds in various regions of the grid,
improving the stability of the forward solver.
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Figure 3.4: Pavement Profile (right) is mapped to the computational domain (left).

We have experimented numerically with the grid parameters described in this chapter (size of the
computational domain, location/extent of the vertical and horizontal boundary conditions, time
step and number of grid levels in the hierarchy, etc.). Using this implementation, performing a
reliable 3D forward simulation for typical moduli, over the time duration of the FWD test (∼
60ms), requires on the order of 20 min on typical desktop machines (3GHz Pentium) depending
on the specific profile. A multi-processor prototype implementation has been done [22] and is
currently being tested and refined to improve its runtime. Since the backcalculation procedure
typically requires dozens of calls to the forward problem, the importance of speeding up the forward
problem can not be understated.
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Chapter 4

Conclusions

The goal of this study was to evaluate the ability to recover pavement layer modulii and thicknesses
from dynamic Falling Weight Deflectometer data.

• The vertical profile is discretized into a number of ”thin computational layers”, and the
modulii of these layers are used as the variables in an optimization problem that seeks to
minimize the residual error between computed and observed time history data. Physical layer
thicknesses may be obtained, post-optimization, by grouping thin layers of similar properties.
A gradient in modulii within a physical layer may also be captured in this fashion.

• The basic optimization problem, a nonlinear least squares problem, is ill-posed. It generally
fails to converge, even when starting with initial guesses that are ”fairly close”. Numerically,
the problem has multiple local minima, as well as regions with flat (and noisy) gradients that
can send the iterative numerical solution far away from the true optimum.

• Regularization terms that control the change in the layer modulii must be added to the
residual objective function to avoid convergence problems. Two regularization terms have
been identified and tested for the FWD backcalculation problem. One involves the absolute
values of the modulii to prevent physically-unrealistic solutions with large layer modulii.
The other controls the gradient of the modulii in the vertical direction to prevent ”rough”
solutions, where the optimization converges to a profile consisting of neighboring layers that
alternate between stiff and soft.

• Continuation methods are necessary to properly implement the regularized minimization
problem. The weights given to the regularizing terms cannot be generally determined a-
priori. A continuation scheme for slowly reducing the weights on these terms provides an
effective computational strategy for implementing the regularized minimization.

• Noise in the data can be managed with the continuation scheme. Some noise effects can
be pre-processed before backcalculation (filtering out high frequency response components,
correcting for initial recording lag in the data, etc.). Any remaining noise has to be included
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in the backcalculation method. Termination criteria must be carefully monitored, so that
the backcalculation continues only as long as when the residual norm decreases without in-
creasing the regularization terms. Large values of the regularizing terms indicate physically
unrealizable profiles.

• The solution of the forward problem (and its adjoint for computing derivatives of the ob-
jective function) remains a critical bottleneck from a computational perspective. Given that
the calls to the forward problem occur in the inner loop of the optimization problem, and
therefore is run repeatedly during solution, it is important to develop computationally effi-
cient methods for the elastodynamic problem. Multiprocessor machines may be necessary to
generate solutions in a reasonable time frame for office use.

Additional work to overcome some of the current limitations include:

• A fast parallel implementation of the forward problem. As mentioned above, a parallel imple-
mentation of the forward solver has been developed and can provide significant speedup (since
it uses multi level cartesian grids with data structures that can be parallelized effectively).
Another improvement on the forward problem could include a hybrid solution scheme where
a finite volume discretization in the immediate region in the vicinity of the loading plate and
geophones is used, coupled with a layered elastic solution in the deeper far-away region.

• A better tuning of the termination criteria for weighing the balance between minimizing the
residual and the regularizing terms. This will require more numerical experimentation with
field data to study the effect of noise on the convergence of the solution. Use of available
a-priori information on the profile may also be used to improve the regularization of the
optimization problem.

• A study of the effect of more general material models on the backcalculated profiles. There
is some evidence that material properties may be anisotropic and/or the granular base layers
have nonlinear stress dependence[10] . Hence the assumptions of isotropic and horizontally
uniform layers are not appropriate. The computational infrastructure developed here allows us
to consider these generalizations [22] but a comprehensive study requires the implementation
of a faster forward solver first.
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